265 research outputs found

    Well Structured Transition Systems with History

    Get PDF
    We propose a formal model of concurrent systems in which the history of a computation is explicitly represented as a collection of events that provide a view of a sequence of configurations. In our model events generated by transitions become part of the system configurations leading to operational semantics with historical data. This model allows us to formalize what is usually done in symbolic verification algorithms. Indeed, search algorithms often use meta-information, e.g., names of fired transitions, selected processes, etc., to reconstruct (error) traces from symbolic state exploration. The other interesting point of the proposed model is related to a possible new application of the theory of well-structured transition systems (wsts). In our setting wsts theory can be applied to formally extend the class of properties that can be verified using coverability to take into consideration (ordered and unordered) historical data. This can be done by using different types of representation of collections of events and by combining them with wsts by using closure properties of well-quasi orderings.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Verification of Query Completeness over Processes [Extended Version]

    Full text link
    Data completeness is an essential aspect of data quality, and has in turn a huge impact on the effective management of companies. For example, statistics are computed and audits are conducted in companies by implicitly placing the strong assumption that the analysed data are complete. In this work, we are interested in studying the problem of completeness of data produced by business processes, to the aim of automatically assessing whether a given database query can be answered with complete information in a certain state of the process. We formalize so-called quality-aware processes that create data in the real world and store it in the company's information system possibly at a later point.Comment: Extended version of a paper that was submitted to BPM 201

    Verification of Generalized Inconsistency-Aware Knowledge and Action Bases (Extended Version)

    Full text link
    Knowledge and Action Bases (KABs) have been put forward as a semantically rich representation of a domain, using a DL KB to account for its static aspects, and actions to evolve its extensional part over time, possibly introducing new objects. Recently, KABs have been extended to manage inconsistency, with ad-hoc verification techniques geared towards specific semantics. This work provides a twofold contribution along this line of research. On the one hand, we enrich KABs with a high-level, compact action language inspired by Golog, obtaining so called Golog-KABs (GKABs). On the other hand, we introduce a parametric execution semantics for GKABs, so as to elegantly accomodate a plethora of inconsistency-aware semantics based on the notion of repair. We then provide several reductions for the verification of sophisticated first-order temporal properties over inconsistency-aware GKABs, and show that it can be addressed using known techniques, developed for standard KABs

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them

    AONT-LT: a Data Protection Scheme for Cloud and Cooperative Storage Systems

    Full text link
    We propose a variant of the well-known AONT-RS scheme for dispersed storage systems. The novelty consists in replacing the Reed-Solomon code with rateless Luby transform codes. The resulting system, named AONT-LT, is able to improve the performance by dispersing the data over an arbitrarily large number of storage nodes while ensuring limited complexity. The proposed solution is particularly suitable in the case of cooperative storage systems. It is shown that while the AONT-RS scheme requires the adoption of fragmentation for achieving widespread distribution, thus penalizing the performance, the new AONT-LT scheme can exploit variable length codes which allow to achieve very good performance and scalability.Comment: 6 pages, 8 figures, to be presented at the 2014 High Performance Computing & Simulation Conference (HPCS 2014) - Workshop on Security, Privacy and Performance in Cloud Computin

    Plan Synthesis for Knowledge and Action Bases

    Get PDF
    We study plan synthesis for a variant of Knowledge and Action Bases (KABs), a rich, dynamic framework, where states are description logic (DL) knowledge bases (KBs) whose extensional part is manipulated by actions that possibly introduce new objects from an infinite domain. We show that plan existence over KABs is undecidable even under severe restrictions. We then focus on state-bounded KABs, a class for which plan existence is decidable, and provide sound and complete plan synthesis algorithms, which combine techniques based on standard planning, DL query answering, and finite-state abstraction. All results hold for any DL with decidable query answering. We finally show that for lightweight DLs, plan synthesis can be compiled into standard ADL planning

    Synthesizing and executing plans in Knowledge and Action Bases

    Get PDF
    We study plan synthesis for a variant of Knowledge and Action Bases (KABs). KABs have been recently introduced as a rich, dynamic framework where states are full-fledged description logic (DL) knowledge bases (KBs) whose extensional part is manipulated by actions that can introduce new objects from an infinite domain. We show that, in general, plan existence over KABs is undecidable even under severe restrictions. We then focus on the class of state-bounded KABs, for which plan existence is decidable, and we provide sound and complete plan synthesis algorithms, through a novel combination of techniques based on standard planning, DL query answering, and finite-state abstractions. All results hold for any DL with decidable query answering. We finally show that for lightweight DLs, plan synthesis can be compiled into standard ADL planning. © 2016, CEUR-WS. All rights reserved

    From zero to hero: A process mining tutorial

    Get PDF
    Process mining is an emerging area that synergically combines model-based and data-oriented analysis techniques to obtain useful insights on how business processes are executed within an organization. This tutorial aims at providing an introduction to the key analysis techniques in process mining that allow decision makers to discover process models from data, compare expected and actual behaviors, and enrich models with key information about the actual process executions. In addition, the tutorial will present concrete tools and will provide practical skills for applying process mining in a variety of application domains, including the one of software development
    • …
    corecore